
考えるアシカbeta
(Takafumi Yanagawa)

テスト設計コンテスト’25 決勝

2026/1/24

だんだん動物園入場管理システム
更新に伴うテスト設計のご提案

01

02

03

04

05

06

2

はじめに

背景とご提案の概要

継続的に運用可能なリグレッションテストのご提案

リスク分析を進める上での考え方

AI Coding Agentを用いたテスト設計

まとめ

2023年の初出場以来、2年ぶり2回目
今年はAI Agentsを仲間に引き連れて参加！！(つまりソロ)
レギュレーションの人数制限なんて関係なしっ

チーム紹介

3

チームメンバー

アシカ

＆

AI

？

テスト設計のコンセプト

4

コンセプトは「Test Hyperdrive」
AI Agentでテストの未来を“ 超加速”させよう

コードエディタとGitリポジトリ内で、テスト設計プロセス全てを完結。

AIと協働することで、テストをボトルネック にしない
開発スピードが速くなる中で、 テストも進化しなければならない

つまりは、How極振りってこと？

01

02

03

04

05

06

5

はじめに

背景とご提案の概要

継続的に運用可能なリグレッションテストのご提案

リスク分析を進める上での考え方

AI Coding Agentを用いたテスト設計

まとめ

背景と今回のご提案の概要
だんだん動物園様では、人気動物による入場者数に伴い、機器ならびにシステム
の更新を予定されております

そこで・・・

　『入場ゲートの増設、ならびに、入場ゲートハブ新設に伴うテスト』

 『継続的に運用可能なリグレッションテスト』

をご提案いたします！

6

そのまんまじゃないの…

今回のプレゼンテーションのスコープ
だんだん動物園様では、人気動物による入場者数に伴い、機器ならびにシステム
の更新を予定されております

そこで・・・

　『入場ゲートの増設、ならびに、入場ゲートハブ新設に伴うテスト』

 『継続的に運用可能なリグレッションテスト』

をご提案いたします！

7

こちらにFocus

01

02

03

04

05

06

8

はじめに

背景とご提案の概要

継続的に運用可能なリグレッションテストのご提案

リスク分析を進める上での考え方

AI Coding Agentを用いたテスト設計

まとめ

リグレッションテストとは
● リグレッション: ソフトウェアに変更を加えた際、変更されていない

既存の機能に意図せず干渉 し、期待するふるまいが得られなくなる事象
● リグレッションテスト : リグレッションが発生リスクを低減させるためのテスト

のこと。変更部分に対するテストはスコープに含めない 。

9

ビジネスの
規模拡大

競合他社との
差別化

ソフトウェアと
リグレッションテストの規模

リグレッションテストのよくある課題

10テストするアシカ. よいリグレッションテストとは何なのか. https://tyngw.hatenablog.com/entry/2025/06/30/regression-test

テストスイートが増
え続ける

リリース直前に重篤
な障害が見つかる

なぜこのような状況に陥ってしまうのか

● 新しい機能を実装した時、変更を加えた
際のリグレッションテストの追加基準が
不明瞭

● テストの目的が不明瞭なため、テストを
削除することが困難

リグレッションテストはソフトウェアのライフサイクルとともに継続
的に使われるものだから、途中で担当者が変わったりすると、テスト

の意図が引き継がれずに失われてしまうのが一因なのかな∼

Test sizeに基づく
適切なテストレベル

への分類

異なるテストレベルで同じ
テスト目的を持ったテスト
が実装されてしまったり、
あるテストレベルで実施す
べきテストが他のテストレ
ベルに偏る問題を解決。

リグレッションの
「リスク」を
基にしたテスト

リスク分析では、ある機能
が動作しなかった場合に、
誰にどのような影響を及ぼ

すのかを評価。
そのテストをやらなかった
時にどうなるかを明示する

リグレッションテストを継続的に運用するために

11

01

02

03

04

05

06

12

はじめに

背景とご提案の概要

継続的に運用可能なリグレッションテストのご提案

リスク分析を進める上での考え方

AI Coding Agentを用いたテスト設計

まとめ

リグレッションテストの分析∼設計の流れ

13

リスク一覧

機能不動作
リスク抽出

テストベース 業務抽出 業務一覧

ステークホル
ダ識別

主要ステークホ
ルダ

リスク
重み付け

ラルフチャート

リスクに紐づく
目的機能・因子・
水準の洗い出し

実装方針・Test
size決定

シナリオ概要

原因結果グラフ

購入枚数指定業務

業務一覧の作成
リスクの特定にあたって、どういった
単位でリスクを特定するのかを検討。

ユースケース単位でリスクの洗い出し
をした結果、共通項が存在することが
わかったので、機能的責務ごとに
リスク分析を行うことにした。

14

いますぐ入場券購入
ユースケース

何人ですか？

大人2人、子供1人

料金計算・決済業務

1000円です

ジャスPayで

時間指定入場券購入
ユースケース

システム化前に
行なっていた
人間の仕事の
単位で分割

※便宜上
業務と呼称

リグレッションテストのベースであるリスク管理表は
継続的に使うから、機能的責務毎にまとめるほうが保守しやすい

と思ったらしいよ。
でも、これはあくまで一例。実際にはチーム構成やシステムの
アーキテクチャを考慮して適切な分割単位を検討しよう！

リスクレベルの定義
リスクの重篤度や発生頻度を定量的に導き出すのは困難。(未来予知でもできない限り)

しかし、リスクベースドテストを選択する限り、避けては通れない問題。
「考慮していなかった」を避けるために、複数の判断軸でリスクレベルを決定。

15

重篤度 直接的な影響度、関連機能への波及影響度、短期的な金銭的影響
度、長期的な金銭的影響度から最も深刻な影響を基準
→ S, A, B に割り当て

発生頻度 対象機能の利用頻度 × 障害の発生しやすさ係数[*] で算出
→ High, Medium, Low に割り当て

それでもなお、感覚的だよね…

*: 過去に障害が発生した機能や、過去に障害となった類似のアーキテクチャを採用している場合などチームで合意の上で調整する係数

リグレッションリスクの考え方

16

リグレッションテスト 以外で
の

リスクの捉え方

リグレッションテストにおけ
る

リスクの捉え方

● 変更箇所に対するテストであるため、
テストをすることでリリース可能である
品質であることの確信を持ちたい

● 新しい欠陥が見つかる可能性が高い

● リスクベースドテストをする場合、リス
クの考慮漏れがあると、すなわち欠陥を
見逃すことに繋がるため、できる限りさ
まざまなリスクを抽出する必要がある

● 変更していない(影響を及ぼしていない
はずの)箇所に対するテストなので、既
存のふるまいに影響がないことを確認し
たい

● 新しい欠陥が見つかる可能性は低く、コ
ストもかけたくない

● 主に仕様に定義されることになる論理的
な関係が満たされていることの確認に
フォーカスしたい
 → 機能不動作が起きた時に、誰にどの
ような影響があるかをベースに機能ごと
に分析していく

Test sizeの定義

17*: Google Testing Blog．Test Sizes．2010．https://testing.googleblog.com/2010/12/test-sizes.html

Small Medium Large

Network access No Localhost only Yes

Database No Yes Yes

File system access No(Mock) Yes Yes

Use external systems No(Mock) Discouraged Yes

Multiple threads No Yes Yes

Sleep statements No Yes Yes

System properties No Partial Override Yes

Time limit 60 300 1800+

Mediumでは入場ゲート
ハブ<->入場管理など
園内localで実施

決済システム、運営管
理システムへのアクセ

スはLargeのみ

予約管理DB、会員情報
管理DBへのアクセス

固定文言ファイルの読
み込み、一時的な印刷

スプールなど

入場ゲート複数台での
処理など

号機番号、残数切替閾
値など

00分/30分の時間枠の境
界など

Small Middle Large

発券機からログインできる

Test sizeによる分類例

18

発券機

Webチケット
システム(Mock)

入場管理

残数によるいますぐ入場券
購入画面への遷移制御

入場ゲート

入場ゲートハブ
(Mock)

有効なチケット情報にて、
扉「開」イベントが送信される

使用済みチケット情報にて、
扉「開」イベントが送信されな

い

発券機

Webチケット
システム

入場管理

対象システムのアーキテクチャに依存するものの、
実行時間が長く、多くの依存関係が必要なLargeサイズのテストで

はHappy pathレベルの確認だけが残る

依存関係:多
実行スピード:低

依存関係・実行スピード

依存関係:少
実行スピード:高

01

02

03

04

05

06

はじめに

背景とご提案の概要

継続的に運用可能なリグレッションテストのご提案

リスク分析を進める上での考え方

AI Coding Agentを用いたテスト設計

まとめ

19

AIは驚異的な生成スピードの反面、課題も
● 与えたコンテキストの中でしか生成されない

○ コンテキストを与えない場合は、一般的な知識をもとに生成される

● 出力されたものをいかにレビューしていくか
○ また、それをチーム内で納得できる形で表現し・合意形成していく必要性がある

● レビューした結果をどのようにフィードバックし、反映していくのか
○ 違和感のある内容を個別にチャットで指示したり、人が手作業で修正していくのは果たし

て本当に効率的なのか
○ 60~70点の成果物は作成できるが、より高い品質を目指すなら人間の関与が必須

20

● 通信失敗時に適切なエラーハン
ドリングが行われ、デフォルト
値で起動すること

● 「発券機と入場管理が通信失敗
したとき○○となる」「入場
ゲートハブが故障したとき∼
○○となる」

● 仕様では、通信失敗時は障害停
止画面を表示して係員に通知す
るはず【期待結果の誤り】

● 対象のコンポーネントは何か？
と、そのコンポーネントがどう
なるか？という2つの視点が混
ざっていて、十分性が判断しに
くい【説明根拠の不足】

AIによる出力結果にありがちな結果

21

> ○○機能についてのテストケースを生成してください

機能不動作リスク抽出
構造化データ(json)で出力し、出力項目を厳格に定めた上で各項目の内容はで
きるだけ小さく出力させる。そして、GUIで視覚的に確認・編集・削除可能。

22

● リスクID
● リスクの概要・詳細・失敗シナリオ例
● 影響

○ ステークホルダ毎（入場者、動物園係員、
動物園経営者、だんだん市補助金担当）

● 重篤度
○ 直接影響,波及影響,短期的金銭影響,長期的金銭

影響をそれぞれ5段階の数値で表現
● 発生頻度

○ 機能の利用頻度,故障のしやすさを
それぞれ5段階の数値で表現

● 根拠となったテストベース名・機能ID

リスクに関連する目的機能・因子・水準の洗い出し
モデル(ラルフチャート [*]、ISO/IEC 25010の品質モデ
ル)に沿って出力することで、レビュー容易性を上げる

23

● 目的機能（ユーザーストーリ）
○ <利用者の役割>として <ゴール> を達

成したい。<理由>のためだ。の形式で
出力

● inputs(信号因子),noise(誤差因
子),state(状態因子)と水準の洗
い出し

● 主にどの品質特性に基づくテスト
なのかを分類
○ 特定の品質特性に不足がないかを

チェックする目的で記載

*1: 秋山 浩一．HAYST法によるテスト設計の考え方．JaSST’18 Tohoku．https://jasst.jp/symposium/jasst18tohoku/pdf/S1.pdf

実装方針とTest sizeの決定
● Largeサイズのテストは原則として シナリオテストにて実装
● Mediumサイズ以下のテストは、入力条件による出力のパターンなどを見る

ケースがあるので、原因結果グラフを作成(仕様書から自動生成)

24*1: CEGTest．https://softest.jp/tools/CEGTest/

同じファイル(json)

リスク一覧

Test sizeを算出する際にLLMに対して与えているコンテキスト

実装方針・Test
size決定

ラルフチャート

Test size
分類結果

コンポーネント図
コミュニケーショ

ン図

シナリオテストの自動生成
画面遷移図や、アクティビティ図をもとに、
実際に操作可能な手順の組み合わせでシナリオテストを生成

25

同じファイル(json)

リスク一覧

シナリオテストを生成する際にLLMに対して与えているコンテキスト

シナリオ生成

ラルフチャート

シナリオテスト

アクティビティ図

画面遷移図

原因結果グラフの自動生成
仕様書の論理関係の記述を読み取り、AIが原因結果グラフを自動生成。

モデル化することで、文章では読み取りづらい論理関係や曖昧さを検知！

26

テストベースを読み込ま
せ、意味のある段落でセ
クションに分割
→MCPサーバを提供してお
り、AI Agentsからセク
ション分割を指示するこ
とができる

当該セクションの仕様に対し
て、mermaid形式で擬似的に
原因結果グラフを作成。
(本来の原因結果グラフの表現方法
とは異なる)
原因結果グラフからデシジョ
ンテーブルを生成することも
可能であるが、本ツールとし
ては未対応。
CEGTestを用いる。

01

02

03

04

05

06

27

はじめに

背景とご提案の概要

継続的に運用可能なリグレッションテストのご提案

リスク分析を進める上での考え方

AI Coding Agentを用いたテスト設計

まとめ

● リグレッションを前提としたリスクの捉え方を再定義。
● リスクxTest sizeを軸に、リグレッションテストの追加・削減の基準を

明確化
● 構造化データ(json)でキーワードレベルで小さく出力したり、情報のソー

スを示すことで、納得感のある出力結果を得た上で、GUIで出力結果のレ
ビューができる仕組みの構築

担当者が変わっても「なぜこのテストをすべきなのか」を途切れさせない
継続的に運用可能なリグレッションテスト を実現！

まとめ

28

ありがとうございました

29

おしまい！今年は時間内に話せた？

Backup
（フロア展示資料）

30

リグレッションテストの分析∼設計の流れ

31

リスク一覧

機能不動作
リスク抽出

テストベース 業務抽出 業務一覧

ステークホル
ダ抽出

主要ステークホ
ルダ

リスク
重み付け

ラルフチャート

リスクに紐づく
目的機能・因子・
水準の洗い出し

実装方針・Test
size決定

シナリオ概要

原因結果グラフ

32

同じファイル

Test sizeについて

33*: Google Testing Blog．Test Sizes．2010．https://testing.googleblog.com/2010/12/test-sizes.html

リスク一覧

Test sizeを算出する際にLLMに対して与えているコンテキスト

実装方針・Test
size決定

ラルフチャート

Test size
分類結果

コンポーネント図
コミュニケーショ

ン図

Excelやスプレッドシートにデータがある場合も多く、
既存のデータからの変換が大変。
そこで、VSCode上でMarkdown形式のテーブルを直接編集
したり、行・列の追加・削除が容易に行える
拡張機能を開発[*]。
ExcelやスプレッドシートとMarkdown Table Editor上
でコピー＆ペーストで相互にデータを貼り付けられた
り、CSVインポート・エクスポート機能を兼ね備える。

Markdown形式のテーブルを扱いやすくするための拡張機能の開発

34*: Interactive Markdown Table Editorという名称でVisual Studio Marketplaceで公開中(Free)。
 2025年12月21日現在、ダウンロードが可能ですが、今後予告なくアクセスできなくなる可能性があります。

json形式で出力されたリスク一覧、ラルフチャートを視覚的に表示できるWebUIの実装

35*: Repository・実装は非公開です

jsonに含まれるさまざまなメタ
情報を用いて絞り込むことがで
きるので、気になった視点でレ
ビューをすることが容易になり
ます
ex) 特にリスクレベルが高いの
はどれ？リスクレベルは妥当？

● 業務ID
● 機能ID
● 品質特性
● テストサイズ
● リスクレベル

都度LLMに指示を出して修正する
のは大変なので、メモ機能を実装

メモの内容を一括で修正指示する
ことが可能に。

WebUI上で直接変更したり削除す
ることも可能

モデルに当てはめて表現すること
で、条件に不足がないかを容易に
チェックすることができる

[STEP3]
原因結果グラフからデシジョ
ンテーブルを生成できます
が、本ツールでは未対応。
既存のCEGTestなどを用いる
ことでデシジョンテーブルに
変換できます。

[STEP2]
分割したセクションに含まれる論理関
係をLLMに分析させ、原因結果グラフ
をmermaid形式で出力。[*]
mermaid形式では原因結果グラフの表
記をそのまま表現することはできない
ため擬似的なモデルで表現。

原因結果グラフ(CEG)生成ツールの開発

36*: Repositoryは非公開です

[STEP1]
テストベースを読み込ませ、意味のある段落
でセクションに分割

手動でのセクション区切りはもちろん、MCP
サーバを提供しており、AI Agentsからセク
ション分割を指示することもできます

